Snow loads in a changing climate: new risks?
نویسنده
چکیده
In January/February 2006, heavy snowfalls in Bavaria (Germany) lead to a series of infrastructural damage of catastrophic nature. Since on many collapsed roofs the total snow load was not exceptional, serious engineering deficiencies in roof construction and a sudden rise in the total snow load were considered to be the trigger of the events. An analysis of the then meteorological conditions reveals, that the early winter of 2005/2006 was characterised by an exceptional continuous snow cover, temperatures remained around the freezing point and no significant snowmelt was evident. The frequent freezing/thawing cycles were followed by a general compaction of the snow load. This resulted in a re-distribution and a new concentration of the snow load on specific locations on roofs. With respect to climate change, the question arises as to whether the risks relating to snow loads will increase. The future probability of a continuous snow cover occurrence with frequent freezing/thawing cycles will probably decline due to predicted higher temperatures. However, where temperatures remain low, an increase in winter precipitation will result in increased snow loads. Furthermore, the variability of extremes is predicted to increase. If heavy snowfall events are more frequent, the risk of a trigger event will likely increase. Finally, an attempt will be made here in this paper to outline a concept for an operational warning system for the Bavarian region. This system envisages to predict the development and risk of critical snow loads for a 3-day time period, utilising a combination of climate and snow modelling data and using this together with a snow pillow device (located on roofs) and the results of which. Correspondence to: U. Strasser ([email protected])
منابع مشابه
Investigation of snow cover changes affected by climate change In North West of Iran
In this study in order to monitor snow cover, the Moderate Resolution Imaging Spectroradiometer (MODIS) optical images were used, while for detection of snow covered areas, the snow index-NDSI, was applied. The results showed - according to the climatic conditions of the region- during the following months: December, January, February and March, most of the area is covered by snow and the max...
متن کاملPlasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternat...
متن کاملPrecipitation in a Changing Climate– More Floods and Droughts in the Future
Evidence is building that human-induced climate change— or global warming—has a direct influence on changes in precipitation and the hydrological cycle. While precipitation amount is most commonly considered, even bigger changes occur in its intensity, frequency and type (rain vs. snow). A warmer climate increases risks of both drought and flood, but at different times and/or places. These aspe...
متن کاملThe Impact of Climate & Weather upon Tourism with Particular emphasis on snow Skiing development in Iran
متن کامل
Predictability of Seasonal Streamflow in a Changing Climate in the Sierra Nevada
The goal of this work is to assess climate change and its impact on the predictability of seasonal (i.e., April–July) streamflow in major water supply watersheds in the Sierra Nevada. The specific objective is threefold: (1) to examine the hydroclimatic impact of climate change on precipitation and temperature at the watershed scale, as well as the variability and trends in the predictand (i.e....
متن کامل